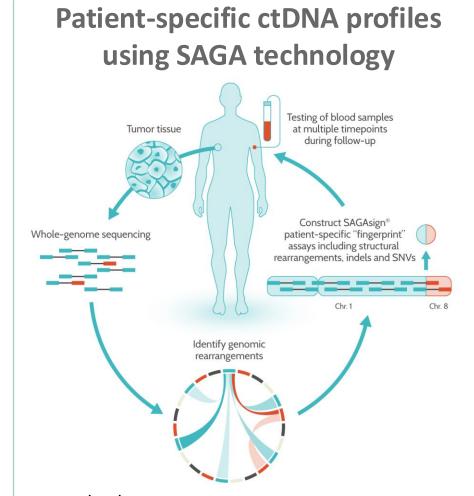
Tumor-informed ctDNA as an early predictive marker for relapse in advanced epithelial ovarian cancer

<u>Tauber C.¹</u>, Trillsch F.¹, Postl M.², Glueck V.³, Gliga M.¹, Segui N.⁴, Howarth K.⁴, Forsberg C.⁴, Alcaide M.⁴, Oton L.⁴, Chen Y.⁴, Saal L.H.⁵, Hofstetter G.⁶, Mahner S.¹, Kessler M.¹, Grimm C.²


Department of Obstetrics and Gynecology and Comprehensive Cancer Center Munich, LMU University Hospital, LMU Munich, Bayern, Munich, Germany, ² Division of General Gynecology and Gynecologic Oncology, Department of Obstetrics and Gynecology, Klinikum Starnberg, Starnberg, Germany ⁴ SAGA Dx,

Morrisville, NC, USA ⁵ Division of Opcology, Lund University, Lund, Sweden ⁶ Department of Pathology, Medical University of Vienna, Austria

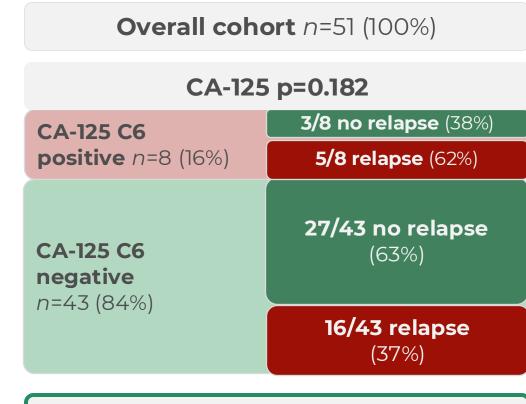
Background

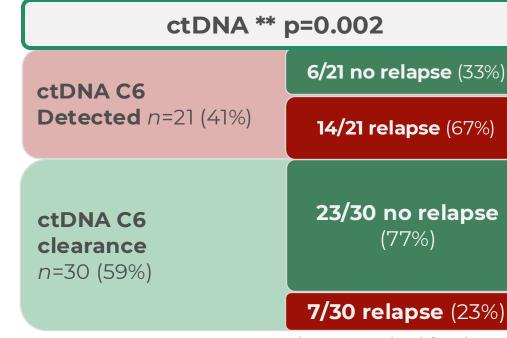
- Prediction of relapse following first-line treatment in patients with high-grade serous ovarian cancer (HGSOC) remains a major challenge despite recent advances in clinical management
- Reliable markers for assessment of relapse risk are urgently needed to tailor treatment strategies

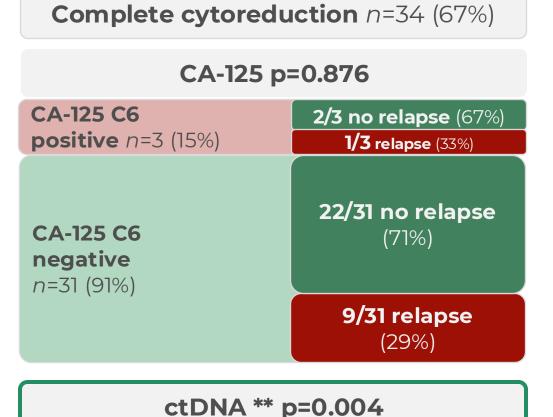
Primary debulking surgery Study design Prospective bi-centric study: n=100 patients with advanced HGSOC Fus every 3 months within first 2 years C1 C3 C6 Fus every 3 months within first 2 years Adjuvant chemotherapy Maintenance & follow-up

- Whole genome sequencing was used to identify structural variants, single nucleotide variants, indels
- Detection of a high number of SVs ensuring a personalized fingerprint for every patient with a median of 8 biomarkers tracked
- Positive ctDNA detection rate
- at baseline 98% (46/47)
- post-surgery d10 88% (40/45)
- C6 59% (30/51)

Characteristics	Details	n=51 (%)
Age (years)	median 61 (33-86)	
FIGO	IIIA/B	12 (24%)
	IIIC	27 (53%)
	IVA	3 (6%)
	IVB	9 (18%)
tBRCA status	mutated	14 (27%)
	wildtype	26 (51%)
	unknown	11 (22%)
Postoperative residual disease	macroscopic	17 (33%)
	none	34 (67%)
Targeted maintenance therapy	yes	47 (92%)
	no	3 (6%)
	unknown	1 (2%)
Relapse		21 (41%)
	PFS median (months)	11.8 (1.8-36.4)
	postoperative residual disease	
	macroscopic	11 (52%)
	microscopic	10 (48%)


Table 1. Patient characteristics. Data of *n*=51 pts with samples from preop through chemotherapy available


How to predict risk for relapse in ovarian cancer after first-line treatment?


Circulating tumor DNA evaluation at end of chemotherapy reveals promising results

Results

Lower rates of recurrence in patients with ctDNA clearance compared to regular CA-125 serum levels at the end of chemotherapy (C6)

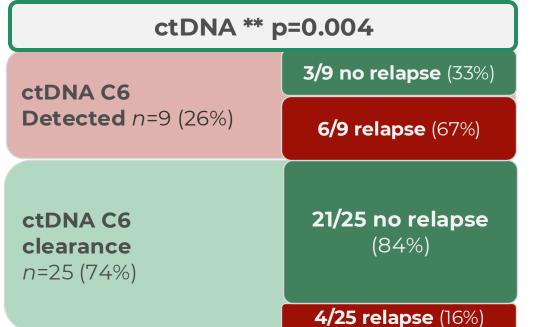


Figure 1. Recurrence rate according to method for detection. Contingency analysis performed with Chi-square test

Conclusion

- ctDNA evaluation at the end of completed first-line chemotherapy might serve as a more reliable predictive marker for recurrence compared to CA-125
- Individualized ctDNA-informed treatment strategies might be established using serial ctDNA analysis especially for patients with complete macroscopic cytoreduction

Outlook

- Validation in final patient cohort (n=100)
- Assessment as biomarker for postoperative tumor residual disease
- Lead time to relapse of ctDNA versus conventional follow-up
- Identification and tracking of gene variants & clonal aberrations under therapeutic pressure

Detection of residual ctDNA at C6 is associated with a shorter PFS in the overall cohort and especially in pts with complete cytoreduction

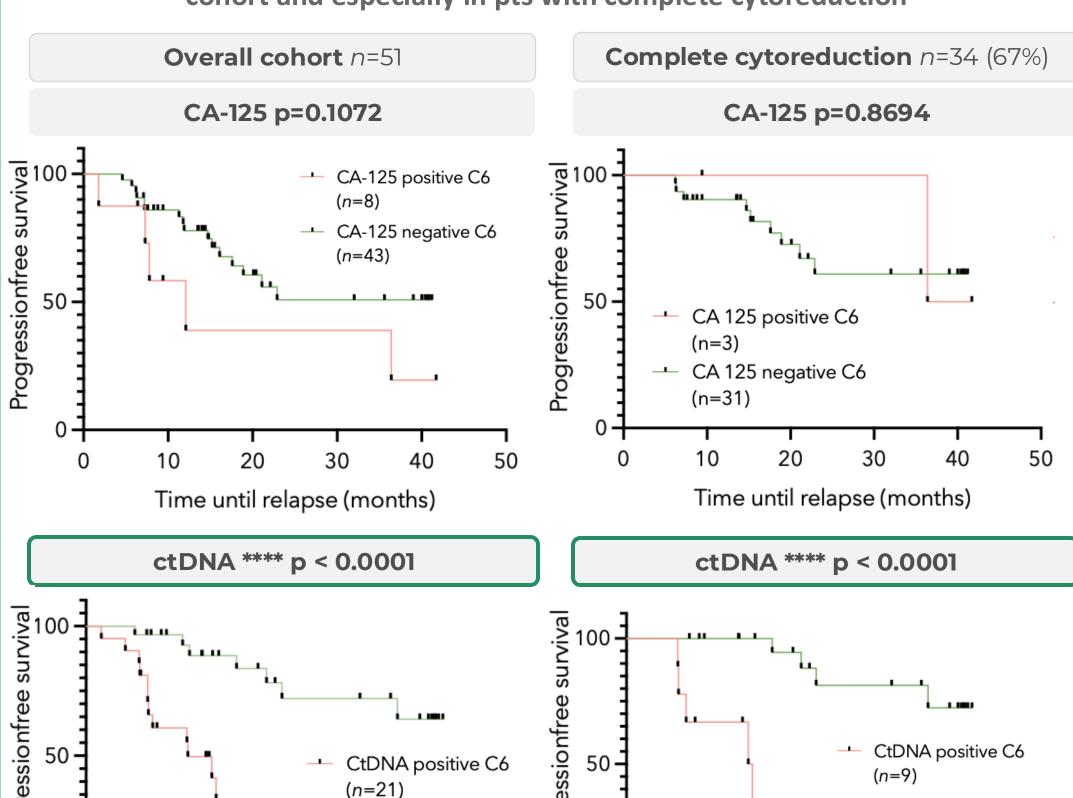
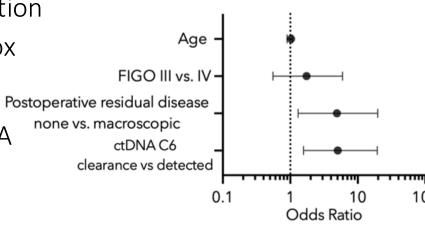


Figure 2. Survival analysis. Patients with detection of ctDNA at C6 showed a significantly shorter median PFS in the overall cohort (median 11.8 vs. 20.6 months, HR 10.09, p<0.0001) and in patients with complete cytoreduction (median 14.9 vs. 22.9 months, HR 119.5, p<0.0001). This effect was not seen in patients with residual tumor (data not shown). No effect on PFS was observed for CA-125 status at C6.

CtDNA negative C6


(n=30)

Multivariate analysis

 The independent prognostic value of ctDNA detection at C6 on PFS was evaluated using a multivariate Cox proportional hazards survival regression model

Time until relapse (months)

• Independent predictors of PFS were positive ctDNA status at C6 (HR=5.05, p=0.0096) & postoperative tumor residual (HR=4.92, p=0.0196)

- CtDNA negative C6

(n=25)

Time until relapse (months)

Poster ID 5574 Presentation at American Society of Clinical Oncology 2025; Chicago, IL, USA <u>Corresponding Author</u>: Christina.Tauber@med.uni-muenchen.de

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® or the author of this poster

